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Outline

Finite latent feature models 

 PCA as the particular example

Infinite latent feature models

 Indian buffet process



Clustering

Basic idea: each data point belongs to a cluster



Why latent features?

Many statistical models can be thought of as modeling data in terms of 
hidden or latent variables.

Clustering algorithms (e.g. using mixture models) represent data in 
terms of which cluster each data point belongs to.

But clustering models are restrictive...

Consider modeling people’s movie preferences (the “Netflix” problem). 
A movie might be described using features such as “is science fiction”, 
“has Charlton Heston”, “was made in the US”, “was made in 1970s”, “has 
apes in it”... these features may be unobserved (latent).

The number of potential latent features for describing a movie (or 
person, news story, image, gene, speech waveform, etc) is unlimited.



Example: Latent Feature/Factors

Characterize both items & users on say 20 to 100 factors inferred 
from the rating patterns

[Y. Koren, R. Bell & C. Volinsky, IEEE, 2009]



Latent Feature Models are not New …

PCA

ICA

LDA (latent discriminant analysis)

LSI

Neural networks

Topic models

 A special case with some constraints (e.g., conservation of belief 

constraint)



Probabilistic PCA

A simple linear-Gaussian model

Let z be a latent feature vector

 In Bayesian, we assume it’s prior

A linear-Gaussian model

 this gives the likelihood

 the columns of W span a linear subspace



Bayesian PCA

A prior is assumed on the parameters W

Inference can be done in closed-form, as in GP regression

Fully Bayesian treatment put priors on



Factor Analysis

Another simple linear-Gaussian model

Let z be a latent feature vector

 In Bayesian, we assume it’s prior

A linear-Gaussian model

 is a diagonal matrix

 this gives the likelihood

 the columns of W span a linear subspace



Model Selection Issue

How to decide the latent dimension?

We will present a non-parametric technique to automatically 

infer the latent dimension



Latent Feature Models

Consider N objects, the latent features form a matrix

The feature matrix can be decomposed into two components

 A binary matrix Z indicating which features possessed by each object

 A matrix V indicating the value of each feature for each object

 Sparsity is imposed on the binary matrix Z

 For Bayesian, the prior can be imposed as

 We will focus on          , which determines the effective 
dimensionality of latent features



A Finite Latent Feature Model

A random finite binary latent feature model

 is the relative probability of each feature being on, e.g.,



A Finite Latent Feature Model

The marginal probability of a binary matrix Z is

Features are 

independent!



A Finite Latent Feature Model

The conditional probability of each feature assignment



A Finite Latent Feature Model

Expectation of the number of non-zero features

 the last equality is due to the independence of the features

For feature k, we have

 The last equality is due to the fact that expectation of Beta(r, s) 

is

 Thus, 



From Finite to Infinite

A technical difficulty: the probability for any particular 

matrix goes to zero as

However, if we consider equivalence classes of matrices in 

left-ordered form obtained by reordering the columns:

A many to one mapping!   Order the columns from left to right by the magnitude of the binary 

numbers expressed by that column, taking the first row as the most significant bit.



From Finite to Infinite

A technical difficulty: the probability for any particular 

matrix goes to zero as

However, if we consider equivalence classes of matrices in 

left-ordered form obtained by reordering the columns:

 is the number of features assigned (i.e. non-zero columns).

 is the Nth harmonic number.

 are the number of features with history h (a technicality).



Indian Buffet Process

A stochastic process on infinite binary feature matrices

Generative procedure:

 Customer 1 chooses the first        dishes: 

 Customer i chooses:
 Each of the existing dishes with probability 

 additional dishes, where 



Indian Buffet Process

A stochastic process on infinite binary feature matrices

Stick-breaking construction:

0 0.8 0.8

0.8 0.5 0.4

0.4 0.4 0.16



Inference by Gibbs Sampling

In the finite Beta-Bernoulli model, we have

Set limit             , we have the conditional for infinite model

 for any k such that

 The number of new features should be drawn from



Use with Data

A linear-Gaussian model with binary features

 Gaussian likelihood

 Gaussian prior



Inference with Gibbs Sampling

The posterior is

The conditional for each feature assignment

 If                     ,

 For infinitely many k such that                    : Metropolis steps 

with truncation to sample from the number of new features for 

each object

For linear-Gaussian model,              can be computed



Other Issues

Sampling methods for non-conjugate models

Variational inference with the stick-breaking representation 

of IBP

Applications to various types of data

 Graph structures, overlapping clusters, time series models



Applications of IBP



Discriminative Bayesian Learning

Regularized Bayesian inference:

prior 
distribution

likelihood 
model

posterior 
distribution

prior 
distribution

likelihood 
model

posterior 
distribution

posterior 
regularization

Bayes’ Rule

Optimization

A paradigm to perform Bayesian inference with rich posterior regularization:

Thomas Bayes (1763) 
[Zhu, Chen, & Xing, NIPS 2011; JMLR, 2014]

posterior regularization



Ways to Derive Posterior Regularization

From learning objectives

 Performance of posterior distribution can be evaluated when 
applying it to a learning task

 Learning objective can be formulated as Pos. Reg. 

From domain knowledge (ongoing & future work)

 Elicit expert knowledge

 E.g., logic rules 

Others … (ongoing & future work)

 E.g., decision making, cognitive constraints, etc.



PAC-Bayesian Theory
Basic Setup:
 Binary classification:
 Unknown, true data distribution:
 Hypothesis space: 
 Risk, & Empirical Risk:

Learn a posterior distribution

Bayes/majority-vote classifier:

Gibbs classifier 
 sample an            , perform prediction



PAC-Bayes Theory

Theorem (Germain et al., 2009): 

 for any distribution ; for any set      of classifiers, for any 

prior , for any convex function

 for any posterior , for any , the following 

inequality holds with a high probability (                )

 where



RegBayes Classifiers

PAC-Bayes theory

RegBayes inference

Observations：
 when the posterior regularization equals to (or upper bounds) 

the empirical risk 

 the RegBayes classifiers tend to have PAC-Bayes guarantees.



RegBayes with Max-margin 

Posterior Regularization 

Max-margin Topics and Fast Inference

(Zhu, Ahmed & Xing, JMLR’12; 

Jiang, Zhu, Sun & Xing, NIPS’12; 

Zhu, Chen, Perkins & Zhang, ICML’13;

Zhu, Chen, Perkins & Zhang, JMLR’14)

Nonparametric Max-margin Relational 

Models for Social Link Prediction
(Zhu, ICML’12)

U

V’

X Y

Nonparametric Max-margin Matrix 

Factorization 
(Xu, Zhu, & Zhang, NIPS’12;

Xu, Zhu, & Zhang, ICML’13)

Multimodal  Representation Learning
(Chen, Zhu & Xing, NIPS’10, 

Chen, Zhu, Sun & Xing, PAMI’12;

Chen, Zhu, Sun, & Zhang, TNNLS’13)

Infinite SVMs

(Zhu, Chen & Xing, ICML’11)

Infinite Latent SVMs

(Zhu, Chen & Xing, NIPS’11;

Zhu, Chen, & Xing, JMLR’14)



Bayesian Latent Feature Models (finite)

A finite Beta-Bernoulli latent feature model

 is the relative probability of each feature being on

 are binary vectors, giving the latent structure that’s used to 

generate the data, e.g., 



Indian Buffet Process

A stochastic process on infinite binary feature matrices

Generative procedure:

 Customer 1 chooses the first        dishes: 

 Customer i chooses:
 Each of the existing dishes with probability 

 additional dishes, where 

cust 1: new dishes 1-3

cust 2: old dishes 1,3; new dishes 4-5

cust 3: old dishes 2,5; new dishes 6-8

(Griffiths & Ghahramani, 2005)



Posterior Constraints – classification 

Suppose latent features z are given, we define latent 
discriminant function:

Define effective discriminant function (reduce uncertainty):

Posterior constraints with max-margin principle

Convex U function



The RegBayes Problem

 where

 the hinge loss (posterior regularization) is



Truncated Variational Inference

The idea

 Depends on a stick-breaking representation of IBP (Teh et al., 
2007)

 Truncated mean-field inference with an upper bound of features

 Works reasonably well in practice



Posterior Regularization with a Gibbs Classifier

Posterior distribution to learn

Gibbs classifier randomly draws a sample to make prediction

 For classification, we measure the loss of classifier 

 It minimizes the expected loss



Comparison

Expected hinge-loss is an upper bound

For averaging classifier, the RegBayes problem is suitable for 

variational inference with truncation (Zhu et al., arXiv, 2013)

For Gibbs classifier, the RegBayes problem is suitable for 

MCMC without truncation



Multi-task Learning (MTL)

[Wikipedia] MTL is an approach to machine learning that learns 
a problem together with other related problems, using a shared 
representation

The goal of MTL is to improve the performance of learning 
algorithms by learning classifiers for multiple tasks jointly

It works particularly well if these tasks have some commonality 
and are generally slightly under sampled

Figure from Wikipedia

Author: KilianWeinberger

//upload.wikimedia.org/wikipedia/en/a/af/Multi_Task_Learning_Concept,_2010.jpg
//upload.wikimedia.org/wikipedia/en/a/af/Multi_Task_Learning_Concept,_2010.jpg


Multi-task Representation Learning

Assumption: 

 common underlying representation across tasks

Representative works:

 ASO (alternating structure optimization): learn a small set of 

shared features across tasks [Ando & Zhang, 2005]

 Convex feature learning via sparse norms [Argyriou et al., 

2006]



Basic Setup of the Learning Paradigm 

Tasks:  

N examples per task

Estimate 

Consider features

Predict using functions



Learning a Projection Matrix

Tasks:  

N examples per task

Estimate 

Consider features

Predict using functions



Max-margin Posterior Regularizations

Similar as in infinite latent SVMs

 Averaging classifier

 The hinge loss

 Gibbs classifier



Experimental Results

Multi-label Classification (multiple binary classification)

 Accuracy and F1 scores (Micro & Macro) on Yeast and Scene datasets

Model Acc F1-Macro F1-Micro

YaXue [Xue et al., 2007] 0.5106 0.3897 0.4022

Piyushrai [Piyushrai et al., 2010] 0.5424 0.3946 0.4112

MT-iLSVM 0.5792 ± 0.003 0.4258 ± 0.005 0.4742 ± 0.008

Gibbs MT-iLSVM 0.5851 ± 0.005 0.4294 ± 0.005 0.4763 ± 0.006

Model Acc F1-Macro F1-Micro

YaXue [Xue et al., 2007] 0.7765 0.2669 0.2816

Piyushrai [Piyushrai et al., 2010] 0.7911 0.3214 0.3226

MT-iLSVM 0.8752 ± 0.004 0.5834 ± 0.026 0.6148 ± 0.020

Gibbs MT-iLSVM 0.8855 ± 0.004 0.6494 ± 0.011 0.6458 ± 0.011



Experimental Results

Multi-task Regression

 School dataset (139 regression tasks) – a standard dataset for 
evaluating multi-task learning

 Percentage of explained variance (higher, better)



Link Prediction

Network structures are usually unclear, unobserved, or 

corrupted with noise



Link prediction – task 

Dynamic networks

Static networks

We treat it as a supervised 

learning task with 1/-1 labels



Link Prediction as Supervised Learning

Building classifiers with manually extracted features from 

networks

 Topological features

 Shortest distance, number of common neighbors, Jaccard’s coefficient, 

etc.

 Attributes about individual entities

 E.g., the papers an authors has published

 * an aggregation function is needed to combine attributes for each pair 

 Proximity features

 E.g., two authors are close, if their research work evolves around a large 

set of identical keywords

[Hasan et al., 2006]



Discriminant Function with Latent Features

Strength to get linked 

if both entities have the 

same feature 2



Two Key Issues

N entities → a latent feature matrix Z

How many columns (i.e., features) are sufficient?

→ a stochastic process to infer it from data

What learning principle is good? 

→ large-margin principle to learn classifiers

Max-Margin Nonparametric Latent Feature Models for Link Prediction. 

[Zhu, ICML 2012]



Some Results
AUC – area under ROC curve (higher, better)

Two evaluation settings
 Single – learn separate models for different relations, and average the AUC 

scores;

 Global – learn one common model (i.e., features) for all relations

Country Relationships



Collaborative Filtering in Our Life



Latent Factor Methods

Characterize both items & users on say 20 to 100 factors inferred 
from the rating patterns

[Y. Koren, R. Bell & C. Volinsky, IEEE, 2009]



Matrix Factorization

Some of the most successful latent factor models are based 

on matrix factorization

item

user
1 2 3 4

1 ?

2 ? ?

3 ? ?

…

…

User-Movie 

Ratings

User 

Features

Movie 

Features



Two Key Issues

How many columns (i.e., features) are sufficient?

→ a stochastic process to infer it from data

What learning principle is good? 

→ large-margin principle to learn classifiers

Nonparametric Max-margin Matrix Factorization for Collaborative Prediction 

User-Movie 

Ratings

User 

Features

Movie 

Features

[Xu, Zhu, & Zhang,  NIPS 2012]



Experiments

Data sets:

 MovieLens: 1M anonymous ratings of 3,952 movies made by 6,040 

users

 EachMovie: 2.8M ratings of 1,628 movies made by 72,916 users

Overall results on Normalized Mean Absolute Error 

(NMAE) (the lower, the better)



Expected Number of Features per User



Fast Sampling Algorithms

See our paper [Xu, Zhu, & Zhang, ICML2013] for details

30 times faster!

8 times faster!



Prediction Performance during Iterations



Objective Value during Iterations



Markov IBP and Time Series



Big Picture
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