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Outline

# Finite latent feature models

a PCA as the particular example

# Infinite latent feature models

a Indian buftfet process




Clustering

# Basic 1dea: each data point belongs to a cluster
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Why latent features?

# Many statistical models can be thought of as modeling data in terms of
hidden or latent variables.

# Clustering algorithms (e.g. using mixture models) represent data in
terms of which cluster each data point belongs to.

& But clustering models are restrictive...

# Consider modeling people’s movie preferences (the “Nettlix” problem).
A movie might be described using features such as “is science fiction”,
“has Charlton Heston”, “was made in the US”, “was made in 1970s”, “has

apes in it”... these features may be unobserved (latent).

# The number of potential latent features for describing a movie (or
erson, news story, image, gene, speech waveform, etc) is unlimited.
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Example: Latent Feature/Factors

# Characterize both items & users on say 20 to 100 factors inferred
from the rating patterns

Serious
t Braveheart
The Color Purple Amadeus

Lethal Weapon

Sense and
Geared Sensibility h ; Geared
toward < L —- toward
females males
. The Lion King —
-aza] Dumber
The Princess Independence| |i@>==¢"
Diaries Day o
Gus
Escapist

[Y. Koren, R. Bell & C. Volinsky, IEEE, 2009]




Latent Feature Models are not New ...

# PCA

@ ICA

# LDA (latent discriminant analysis)
@ LSI

# Neural networks

# Topic models

o A special case with some constraints (e.g., conservation of belief

constraint)




Probabilistic PCA

& A simple linear-Gaussian model

& Let z be a latent feature vector z ¢ RY

o In Bayesian, we assume it’s prior z ~ N(0,1)

# A linear-Gaussian model

x=Wz+put+e e~N(00°I) 02\

o this gives the likelihood
p(xlz) = N(x[Wz + 1, )

o the columns of W span a linear subspace
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Bayesian PCA

# A prior is assumed on the parameters W
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# Inference can be done in closed-form, as in GP regression

# Fully Bayesian treatment put priors on x, o




Factor Analysis

# Another simple linear-Gaussian model

# Let z be a latent teature vector , o gM

o In Bayesian, we assume it’s prior , N(0,1)

# A linear-Gaussian model
Xx=Wz+pu+te e~ N(0,D)

o Vo isa diagonal matrix

o this gives the likelihood
p(xlz) = N (x| Wz + i, T)

a the columns of W span a linear subspace
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Model Selection Issue

# How to decide the latent dimension?

# We will present a non-parametric technique to automatically

infer the latent dimension




Latent Feature Models

# Consider N objects, the latent features form a matrix

# The feature matrix can be decomposed into two components

o A binary matrix / indicating which features possessed by cach object

o A matrixV indicating the value of each feature for each object

(a) K features (b)
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a0 Sparsity is imposed on the binary matrix /

(c)

o For Bayesian, the prior can be imposed as p(F')
o We will focus on p(Z), which determines the effective

dimensionality of latent features

K features

N objects
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A Finite Latent Feature Model

# A random finite binary latent feature model

K
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Y

2| 0| 1|0

I 1 0

Tk | ~ Beta(%, 1)

Zik| Tk ~ Bernoulli(my)




A Finite Latent Feature Model
# The marginal probability of a binary matrix Z is

(HP Zik| k) ) ) ) AT
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A Finite Latent Feature Model

# The conditional probability of each feature assignment
p(zik = 1,2_(; 1))
p(Z—(i,k))
I‘((m_(@-,k) 1)+ %)F(N — (Mg + 1)+ 1)
I'(N + &% +1)

L(m— (i) + %)F((N —1) - m—(i,km)

PQN—1y+%+1)

p(zik = UZ (i) = p(zik = 1z_(i3)) =

plzik = 1,2 1) =

p(z—(i,k)) —

p(zik = 1|Z_(; 1)) = B &

B %F(mk -+ %)F(N — mg + 1)
p(z) = T(N+1+2)
My = Z Zik [(z+1) =al(x)
k i=1




A Finite Latent Feature Model

# Expectation of the number of non-zero features

E[1TZ1] = E { 3 zik} — KE[1" 2]
ik
o the last equality is due to the independence of the features

# For feature k, we have

Oé

1Tzk ZE Zik] —Z/ mep(mE)dm = N
1—|—K

0 The last equality is due to the fact that expectation of Beta(r, s)
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From Finite to Infinite
# A technical difficulty: the probability for any particular

matrix goes to zero as K — o0

lim p(Z|a) =0

K—oo

# However, if we consider equivalence classes of matrices in

left-ordered form obtained by reordering the columns:

(Tl

8

A many to one rnapping! Order the columns from left to right by the rnagnitude of the binary

numbers expressed by that column, taking the first row as the most significant bit.
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From Finite to Infinite
# A technical difficulty: the probability for any particular

matrix goes to zero as K — o0

lim p(Z|a) =0

K—oo

# However, if we consider equivalence classes of matrices in
left-ordered form obtained by reordering the columns:

oK+

. oot
) = explety e TT S

k<Kjy

o K4 is the number of features assigned (i.e. non-zero columns).
N

1 . .
0 Hy = Z — is the Nth harmonic number.

n=1 n

0 Kj, are the number of features with history h (a technicality).




Indian Buffet Process

# A stochastic process on infinite binary feature matrices

# Generative procedure:

o Customer 1 chooses the first K7 dishes: K7 ~ Poisson(a)

o Customer i chooses:

m
Each of the existing dishes with probability —k
1

. o
K; additional dishes, where K; ~ Poisson(—)

(2

cust 1: new dishes 1-4

cust 2: old dishes 2.4
new dishes 5-6

cust 3: old dishes 1.2,.4,6
new dishes 7—8




Indian Buffet Process

# A stochastic process on infinite binary feature matrices

# Stick-breaking construction: 7z, ~ ZBP(«)

Znk ~ Bernoulli(my)
’7T7;(V) = ”Uiﬂ'z'_]_(v) = H U4
1=1

v; ~ Beta(a, 1)

’III

Ty T T3 T4 T5

:Hlvj U; Uy
0 0.8 0.8
0.8 0.5 0.4
0.4 0.4 0.16




Inference by Gibbs Sampling

# In the finite Beta-Bernoulli model, we have

P(zik = 1|Z_(i,k)) = N+ 2

# Set limit K — oo | we have the conditional for infinite model

m_(i?k)
P(Zz‘k = 1\2—(1',14;)) - N

a for any k such that m_; k) > 0

o The number of new features should be drawn from

04

Poisson )
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Use with Data

# A linear-Gaussian model with binary features

o Gaussian likelihood p(X|Z, A,0x) = N(ZA, ai—I)

o Gaussian prior p(Aloa) = N(O, 0124])




Inference with Gibbs Sampling

# The posterior is
p(Z,A|lX,a) x p(X|Z)p(Z|a)
# The conditional for each feature assignment
P(znk = UZ_(n k), X, @) X p(2nk = 1 Z_ (5 1), @)p(X|Z)

o If m_g.k) > U, PRk —(i,k) N

a For infinitely many k such that m_; ) = 0 : Metropolis steps
with truncation to sample from the number of new features for

each object

# For linear-Gaussian model, p(X|Z) can be computed




Other Issues

& Sampling methods for non-conjugate models

# Variational inference with the stick—breaking representation

of IBP Znk ~ Bernoulli(y) |
T (V) = vimi_1(v) = H U
1=1
v; ~Beta(a, 1)

& Applications to various types of data

o Graph structures, overlapping clusters, time series models




Applications of IBP




Discriminative Bayesian Learning

& Regularized Bayesian inference:

A paradigm to perform Bayesian inference with rich posterior regularization:

-

|

prior likelihood
distribution model

N

Bayes’ Rule

\ 4

posterior
distribution

C padM)r(M)
PIMP) = T oM m A

Thomas Bayes (1763)

M

~

-

~

prior likelihood posterior
distribution model regularization

|

~ 1

Optimization

posterior
distribution

min  KL(¢(M)[[p(M]x)) + 2(q(M))
s.t.: g(M) € Pprob, \

posterior regularization

/

\ [Zhu, Chen, & Xing, NIPS 2011; JMLR, 2014]
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Ways to Derive Posterior Regularization

# From learning objectives
o Performance of posterior distribution can be evaluated when
applying it to a learning task

o Learning objective can be formulated as Pos. Reg.

# From domain knowledge (ongoing & future work)
a Elicit expert knowledge
a E.g., logic rules

# Others ... (ongoing & future work)

o E.g, decision making, cognitive constraints, etc.




PAC-Bayesian Theory

# Basic Setup:
o Binary classification: X c R (VNS Y = {_17 +1}
a Unknown, true data distribution: (X, y) ~ D
o Hypothesis space: H

o Risk, & Empirical Risk:
1
R(h) = Epyenl (h(x) #y)  Rs(h) =+ D> I(h(x:) # )

# Learn a posterior distribution ()
# Bayes/majority-vote classifier:

Bg(x) = sgn [Ejgh(x)]
4 Qibbs classifier

o sample an /1 ~ @, perform prediction

R(Gq) = EpwqR(h) Rs(Gq) = EpwgRs(h)




PAC-Bayes Theory

# Theorem (Germain et al., 2009):

a for any distribution D ; for any set H of classifiers, for any

prior P, for any convex function
6: [0,1] % [0,1] — R

a for any posterior () , for any 0 € (O, l] , the following
inequality holds with a high probability (> 1 — ¢ )

¢ (Lis(G), R(Gq)) < % [KL(QHP) +1n (%N))]

o where C(N) =Eg pvE;op [eNﬁb(RS(h)aR(h))]




RegBayes Classifiers

# PAC-Bayes theory

¢ (Rs(Gg), R(Gg)) < % [KL(QHP) +In (@)]

# RegBayes inference

i KL(q(H)[[p(H|x)) + Q(q(H))

s.t. 1 q(H) € Pprob,

# Observations:

o when the posterior regularization equals to (or upper bounds)

Qq(H)) = Rs(Gy)

o the RegBayes classifiers tend to have PAC-Bayes guarantees.

the empirical risk

/




4 N
RegBayes with Max-margin
Posterior Regularization
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Infinite SVMs Nonparametric Max-margin Relational Nonparametric Max-margin Matrix
(Zhu, Chen & Xing, ICML'11) Models for Social Link Prediction Factorization
(Zhu, ICML’12) (Xu, Zhu, & Zhang, NIPS’12;

Xu, Zhu, & Zhang, ICML’13)
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Infinite Latent SVMs Max-margin Topics and Fast Inference Multimodal Representation Learning
(Zhu, Chen & Xing, NIPS’11; (Zhu, Ahmed & Xing, JMLR’12; (Chen, Zhu & Xing, NIPS’10,
Zhu, Chen, & Xing, JMLR’14) Jiang, Zhu, Sun & Xing, NIPS"12; Chen, Zhu, Sun & Xing, PAMI’12;

Zhu, Chen, Perkins & Zhang, [CML’13; Chen, Zhu, Sun, & Zhang, TNNLS’13)
K Zhu, Chen, Perkins & Zhang, JMLR’14) /




Bayesian Latent Feature Models (finite)

# A finite Beta-Bernoulli latent feature model

Tk | ~ Beta(%,l) 2

Zik | ~ Bernoulli(7y)

ZN

. -
. -

0 Tk is the relative probability of each feature being on

a0 z; are binary vectors, giving the latent structure that’s used to

generate the data, e.g.,

X; N(nTZZ’_, 52)




Indian Buffet Process

# A stochastic process on infinite binary feature matrices

4 Generative procedure:
o Customer 1 chooses the first K dishes: K7 ~ Poisson(a)

o Customer i chooses:

Each of the existing dishes with probability %

(}

o
K; additional dishes, where K; ~ Poisson(—)
1

cust 1: new dishes 1-3

cust 2: old dishes 1,3; new dishes 4-5

cust 3: old dishes 2,5; new dishes 6-8
Z ~IBP(«)

(Griffiths & Ghahramani, 2005)




Posterior Constraints — classification

# Suppose latent features z are given, we define latent

discriminant function:

f(x;2,m) =n'z

# Detine effective discriminant function (reduce uncertainty):

f(x;9(Z,m)) = Eyzf(x,2:1)] = Eyz.mn' 2l

# Posterior constraints with max-margin principle

Vn € Itr :ynf(xn; C](Zﬂ?)) > 1 — ‘fn

# Convex U function




The RegBayes Problem

min  L(q(Z,W,n) + 2c-R(q(Z4, W,
R (q( n) (q( n))

a0 where L(q) = KL(q||7(Z, W, 7)) — Eq[log p(x|Z, W)]

0 the hinge loss (posterior regularization) is

R(g) = > max(0,1 — yn f(xn; 9(Z,n))




Truncated Variational Inference
# The idea

p(Z,W,n|X,y, a)

"= _min KL(q||]p)

qE€some family

o Depends on a stick-breaking representation of IBP (Teh et al.,
2007)

o Truncated mean-field inference with an upper bound of features

o Works reasonably well in practice




4 N

Posterior Regularization with a Gibbs Classifier

# Posterior distribution to learn

q(Z,n)

# Gibbs classifier randomly draws a sample to make prediction

(Z,m) ~ q(Z,n)

o For classification, we measure the loss of classifier (Z, n)

R(Z,m) = > max(0,1 -y, f(x,; Z,n)

n

o It minimizes the expected loss

R'(q) = E, Z max (0, 1 — v, f(xn; Z, )




Comparison
# Expected hinge—loss is an upper bound

R'(q) > R{q)

# For averaging classifier, the RegBayes problem is suitable for

variational inference with truncation (Zhu et al., arXiv, 2013)

# For Gibbs classifier, the RegBayes problem is suitable for
MCMC without truncation




Multi-task Learning (MTL)

# [Wikipedia] MTL is an approach to machine learning that learns
a problem together with other related problems, using a shared
representation

Multitask learning

Figure from Wikipedia
Author: Kilian Weinberger

Learning
Task

.

Target {dog,human}

# The goal of MTL is to improve the performance of learning
algorithms by learning classifiers for multiple tasks jointly

# [t works particularly well if these tasks have some commonality

and are generally slightly under sampled



//upload.wikimedia.org/wikipedia/en/a/af/Multi_Task_Learning_Concept,_2010.jpg
//upload.wikimedia.org/wikipedia/en/a/af/Multi_Task_Learning_Concept,_2010.jpg

Multi-task Representation Learning

& Assumption:

0 common underlying representation across tasks

# Representative works:

o ASO (alternating structure optimization): learn a small set of
shared features across tasks [Ando & Zhang, 2005]

o Convex feature learning via sparse norms [Argyriou et al.,

2006]




Basic Setup of the Learning Paradigm

@ Tasks: m=1--- M
# N examples per task

(Xon1s Y1), (X, Ymny) € RP X R
# Estimate

fo:RP 5 R, Vm=1,--- M

# Consider features
hl(X)v CU 7hK(X)

# Predict using functions

fn(%) =D Mhihie(x)




earning a Projection Matrix

@ Tasks: m=1--- M
# N examples per task

(Xon1s Y1), (X, Ymny) € RP X R
# Estimate

fo:RP R Ym=1--- M

# Consider features

he(x) =2z, x, k=1, ,00

# Predict using functions (Z is a D x oo projection matrix)

X Z 77 ank ﬂm(ZT )




Max-margin Posterior Regularizations

# Similar as in infinite latent SVMs

0 Averaging classifier

ymnEq[fm(an; Z7 T’)] Z 1 — gmn

The hinge loss

R= > max(0,1— ymuBylfin(Xma: Zn)])

m,ncL

a Gibbs classifier




Experimental Results

4 Multi-label Classification (multiple binary classification)

a Accuracy and F1 scores (Micro & Macro) on Yeast and Scene datasets

Model Acc F1-Macro F1-Micro
YaXue [Xue et al., 2007] 0.5106 0.3897 0.4022
Piyushrai [Piyushrai et al., 2010] 0.5424 0.3946 0.4112
MT-LSVM 0.5792 & 0.003 | 0.4258 = 0.005 | 0.4742 =% 0.008
Gibbs MT-LSVM 0.5851 == 0.005 | 0.4294 = 0.005 | 0.4763 = 0.006
Model Acc F1-Macro F1-Micro
YaXue [Xue et al., 2007] 0.7765 0.2669 0.2816
Piyushrai [Piyushrai et al., 2010] 0.7911 0.3214 0.3226
MTHLSVM 0.8752 = 0.004 | 0.5834 == 0.026 | 0.6148 == 0.020
Gibbs MT-LSVM 0.8855 & 0.004 | 0.6494 £ 0.011 | 0.6458 £ 0.011




Experimental Results
4 Multi-task Regression

o School dataset (139 regression tasks) — a standard dataset for
evaluating multi-task learning

o Percentage of explained variance (higher, better)

35

el
[

CMT-1BP+SVM
CJmT-1IBP+SYM
CIMT-iLSVM
ERmr-iL s

Explained Variance (%)
]
(5]

Pl
[}
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Link Prediction

# Network structures are usually unclear, unobserved, or

Corrupted with noise




Link prediction — task

# Dynamic networks

DS S
s8 a8 a8 a'a

# Static networks

We treat it as a supervised

learning task with 1/-1 labels
e & &-8
1 —1
9%




Link Prediction as Supervised Learning

& Building classifiers with rnanually extracted features from
networks

= Topological features

Shortest distance, number of common neighbors, Jaccard’s coefficient,

etc.

o Attributes about individual entities

E.g., the papers an authors has published

* an aggregation function is needed to combine attributes for each pair
o Proximity features

E.g., two authors are close, if their research work evolves around a large

set of identical keywords

[Hasan et al., 2006]




Discriminant Function with Latent Features

Z;

f(Zi, Z;; Xi5,W,n) = ZiWZjT

[ ] ]
|

L] H B

Strength to get linked

if both entities have the

9

same feature 2

(l.v\(e&




Two Key Issues

# N entities = a latent feature matrix Z

Z1
Z9

zv [N | R
# How many columns (i.e., features) are sufficient?
— a stochastic process to infer it from data
# What learning principle is good?
— large-margin principle to learn classifiers

Max-Margin Nonparametric Latent Feature Models for Link Prediction.

[Zhu, ICML 2012]




Some Results

# AUC — area under ROC curve (higher, better)

# Two evaluation settings

o Single — learn separate models for different relations, and average the AUC

scores;

o Global — learn one common model (i.e., features) for all relations
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Collaborative Filtering in Our Life
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Latent Factor Methods

# Characterize both items & users on say 20 to 100 factors inferred
from the rating patterns
Serious

t Braveheart

The Color Purple Amadeus

Lethal Weapon

Sense and
Geared Sensibility h ; Geared
toward < L —- toward
females males
. The Lion King —
-aza] Dumber
The Princess Independence| |i@>==¢"
Diaries Day o
Gus
Escapist

[Y. Koren, R. Bell & C. Volinsky, IEEE, 2009]




Matrix Factorization

# Some of the most successful latent factor models are based

on matrix factorization

item

Y

1 2 3 4
user
1 ? | aes
2 | e 2 | 2

User-Movie

Ratings

U

VT

User

Features

Movie

Features




Two Key Issues

Y U

VT

User-Movie User

Ratings Features

Movie

Features

# How many columns (i.e., features) are sufficient?

— a stochastic process to infer it from data

# What learning principle is good?

— large-margin principle to learn classifiers

Nonparametric Max-margin Matrix Factorization for Collaborative Prediction

[Xu, Zhu, & Zhang, NIPS 2012]




Experiments

# Data sets:
o MovieLens: 1M anonymous ratings of 3,952 movies made by 6,040

Uusers

o EachMovie: 2.8M ratings of 1,628 movies made by 72,916 users

# Overall results on Normalized Mean Absolute Error
(NMAE) (the lower, the better)

Table 1: NMAE performance of different models on MovieLens and EachMovie.

Moviel.ens EachMovie

Algorithm weak strong weak strong

M F[11] A156 £.0037 4203 £ .0138 | .4397 £ .0006  .4341 4 .0025
PMF [13] 4332 +£.0033 4413 +.0074 | .4466 £+ .0016  .4579 4+ .0016
BPMEF [12] | .4235 4 .0023  .4450 £ .0085 | .43524.0014  .4445 + .0005

M7F* A176 £.0016 4227 +.0072 | 4348 £+ .0023  .4301 4 .0034
iPM?F 4031 £ .0030 4135+ .0109 | 4211 £ .0019 .4224 + .0051
iBPM-F 4050 £ .0029 4089 £ .0146 | 4268 £ .0029  .4403 £ .0040




Expected Number of Features per User

800
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20 25 30 35 40 45 50 55 60
Expected number of features per user a posteriori




Fast Sampling Algorithms

# See our paper [Xu, Zhu, & Zhang, ICML2013] for details

MovieLens EachMovie

Algorithm weak strong weak strong
M°F 4156 £ .0037 .4203 £ .0138 | .4397 £ .0006 .4341 £ .0025
bed M3F 4176 £ .0016 4227 4+ .0072 | .4348 + .0023 .4301 £ .0034
Gibbs M3F 4037 £ .0005 .4040 4= .0055 | .4134 £ .0017 .4142 £ .0059
iPM°F 4031 £.0030 .4135 £.0109 | .4211 £.0019 .4224 £+ .0051
Gibbs iPM3F | .4080 £ .0013 .4201 & .0053 | .4220 4 .0003 .4331 £ .0057

Algorithm | MovieLens | EachMovie | Iters

M3F 5h 15h 100

bed MPF 4h 10h 50 30 times faster!

Gibbs M3F 0.11h 0.35h 50

iPMPR 4.6h 5.5h 50 .

Gibbs iPM°F | 0.68h 0.70h 50| 8 times faster!

/




Prediction Performance during lterations
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Objective Value during Iterations
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Markov IBP and Time Series

Figure 1: The Hidden Markov Model Figure 2: The Factorial Hidden Markov Model
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Figure 3: The Infinite Factorial Hidden Markov Model
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